Neurons produce a neuronal cell surface-associated chondroitin sulfate proteoglycan.
نویسندگان
چکیده
Monoclonal antibody Cat-315 recognizes a chondroitin sulfate proteoglycan (CSPG) expressed on the surface of subsets of neurons in many areas of the mammalian CNS (). The cell type-specific expression exhibited by the Cat-315 CSPG and other perineuronal net CSPGs imparts a distinct molecular surface identity to a neuron (Celio and Blumcke, 1994; Lander et al., 1997). The cell type(s) producing these surface-associated proteins and yielding this cellular diversity has remained in question. The expression of the Cat-315 CSPG in primary rat cortical cultures has permitted an examination of the cellular source of the Cat-315 antigen, as well as a determination of its spatial relationship to the neuronal surface. Live-cell labeling of primary neuronal cultures demonstrates that the Cat-315 CSPG is on the extracellular surface of neurons. Furthermore, extraction experiments demonstrate that the Cat-315 CSPG lacks a transmembrane domain and that the entire molecule is extracellular and, therefore, can be considered a constituent of brain extracellular matrix. Several lines of evidence indicate that neurons with cell surface staining produce the Cat-315 CSPG. First, neurons with cell surface staining also show intracellular Cat-315 immunoreactivity. Second, beta-xyloside or monensin, reagents that inhibit the synthesis and transport of CSPGs, increase intracellular Cat-315 immunoreactivity within neurons that express cell surface Cat-315 immunoreactivity. Third, double labeling with Cat-315 and a polyclonal antibody for the Golgi complex demonstrates a precise colocalization of the intracellular Cat-315 immunoreactivity with the Golgi. Together, these observations demonstrate that neurons contribute to the extracellular matrix of brain and that the Cat-315 CSPG is produced by the neurons that carry Cat-315 cell surface immunoreactivity.
منابع مشابه
Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth.
Lecticans, a family of chondroitin sulfate proteoglycans, represent the largest group of proteoglycans expressed in the nervous system. We previously showed that the C-type lectin domains of lecticans bind two classes of sulfated cell surface glycolipids, sulfatides and HNK-1-reactive sulfoglucuronylglycolipids (SGGLs). In this paper, we demonstrate that the interaction between the lectin domai...
متن کاملProteoglycans and neuronal migration in the cerebral cortex during development and disease
Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regu...
متن کاملEmbryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing integrin expression.
The primary mediators of cell migration during development, wound healing and metastasis, are receptors of the integrin family. In the developing and regenerating nervous system, chondroitin sulfate proteoglycans (CSPGs) inhibit the integrin-dependent migration of neuronal growth cones. Here we report that embryonic sensory neurons cultured on the growth-promoting molecule laminin in combinatio...
متن کاملProteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension.
Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Cry...
متن کاملIsolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties
Proteoglycans are expressed in various tissues on cell surfaces and in the extracellular matrix and display substantial heterogeneity of both protein and carbohydrate constituents. The functions of individual proteoglycans of the nervous system are not well characterized, partly because specific reagents which would permit their isolation are missing. We report here that the monoclonal antibody...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 1 شماره
صفحات -
تاریخ انتشار 1998